Adobe PDF (1.63 MB)
Title Details:
Riemannian manifolds
Authors: Arvanitogeorgos, Andreas
Reviewer: Platis, Ioannis
Subject: MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY > GLOBAL DIFFERENTIAL GEOMETRY
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > TOPOLOGICAL GROUPS, LIE GROUPS > LIE GROUPS
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY > APPLICATIONS TO PHYSICS
Keywords:
Riemannian Metric
Levi-civita Connection
Geodesic Curve
Parallel Stransport
Exponential Map
Description:
Abstract:
Ορισμός πολλαπλότητας Riemann, Συνοχή Levi-Civita, Το θεμελιώδες θεώρημα της γεωμετρίας Riemann, Τανυστής καμπυλότητας, Καμπυλότητα τομής, Tο θεώρημα Schur, Καμπυλότητα Ricci, Βαθμωτή καμπυλότητα, πολλαπλότητες Einstein, Γεωδαισιακές καμπύλες
Table of Contents:
- Tensor fields
- Riemannian metrics
- The Levi-Civia connection
- The covariant derivative
- Geodesics
- The exponential map
- Problems
Linguistic Editors: Gyftopoulou, Ourania
Type: Chapter
Creation Date: 12-10-2015
Item Details:
License: http://creativecommons.org/licenses/by-nc-nd/3.0/gr
Handle http://hdl.handle.net/11419/149
Bibliographic Reference: Arvanitogeorgos, A. (2015). Riemannian manifolds [Chapter]. In Arvanitogeorgos, A. 2015. Geometry of Manifolds [Undergraduate textbook]. Kallipos, Open Academic Editions. https://hdl.handle.net/11419/149
Language: Greek
Is Part of: Geometry of Manifolds
Number of pages 27
Publication Origin: Kallipos, Open Academic Editions