Adobe PDF (446.17 kB)
Title Details:
The geometry of a Lie group
Authors: Arvanitogeorgos, Andreas
Reviewer: Platis, Ioannis
Subject: MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY > GLOBAL DIFFERENTIAL GEOMETRY
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > TOPOLOGICAL GROUPS, LIE GROUPS > LIE GROUPS
MATHEMATICS AND COMPUTER SCIENCE > MATHEMATICS > DIFFERENTIAL GEOMETRY > APPLICATIONS TO PHYSICS
Keywords:
Left-invariant Metric
Right-invariant Metric
Bi-invariant Metric
Levi-civita Connection
Curvature
Left-invariant Metrics On The Special Unitary Group Su(2)
Berger Spheres
Description:
Table of Contents:
- Left-invariant metrics
- Curvature
- Left-invariant metrics on SU(2) = S^2
- Ασκήσεις
Linguistic Editors: Gyftopoulou, Ourania
Type: Chapter
Creation Date: 12-10-2015
Item Details:
License: http://creativecommons.org/licenses/by-nc-nd/3.0/gr
Handle http://hdl.handle.net/11419/145
Bibliographic Reference: Arvanitogeorgos, A. (2015). The geometry of a Lie group [Chapter]. In Arvanitogeorgos, A. 2015. Geometry of Manifolds [Undergraduate textbook]. Kallipos, Open Academic Editions. https://hdl.handle.net/11419/145
Language: Greek
Is Part of: Geometry of Manifolds
Number of pages 17
Publication Origin: Kallipos, Open Academic Editions